
JOURNAL OF COMPUTATIONAL PHYSICS 128, 223–236 (1996)
ARTICLE NO. 0205

Parallel Multigrid Computation of the Unsteady Incompressible
Navier–Stokes Equations

A. T. DEGANI AND G. C. FOX

Northeast Parallel Architectures Center, Syracuse University, Syracuse, New York 13244-4100

Received September 6, 1995

ment is satisfied but not the second, is in the solution of the
two-dimensional Poisson equation using the Gauss–SeidelParallel computation on distributed-memory machines offers the

capability of a scalable approach to the solution of large CFD prob- method. With a red–black ordering scheme and a block
lems. However, in order to fully realize this capability, it is necessary distribution of data, the parallel implementation of the
not only to devise parallel methodologies, but also to develop nu- Gauss–Seidel method is known to be scalable [1]; however,
merical schemes for which the computational effort also scales

the computational effort required to obtain a convergedwith problem size. To this end, a parallel multigrid scheme for the
solution is of O(N2 log N) which makes this numericalcalculation of the unsteady incompressible Navier–Stokes equa-

tions is considered here. A spatial and temporal second-order accu- scheme impractical for large problems. Thus, it is main-
rate implicit discretization scheme on a staggered grid is employed, tained that the two most desirable features of computa-
and a full approximation storage multigrid method, appropriate for tional algorithms for large problems, typical of those in
nonlinear problems, is used. A parallel solver is developed which

CFD, are: (i) the computational effort required by thesmooths the equations at each multigrid level in a fully coupled
numerical scheme to solve a problem of size N is, say, nomode. The programming paradigm is single program multiple data

with message passing. In comparison with single-grid calculations, more than O(N log N), and (ii) the parallel implementation
it is demonstrated that the convergence rate for multigrid calcula- of the numerical scheme is scalable with the number of
tions is considerably superior and dominates the slight degradation processors p for N/p large and fixed.
in speed up. Q 1996 Academic Press, Inc.

Since the early pioneering work by Brandt [2], multigrid
methods have been used in a wide variety of problems and
a well-designed multigrid method has at most an operation1. INTRODUCTION
count of O(N log N) [3]. Most iterative methods are charac-
terized by the fact that they are efficient in eliminating theA variety of fluid-flow phenomena are inherently un-
high-wave number component of the error in the solution,steady and the accurate calculation of flows at high Reyn-
but are poor in removing the low-wave number error. Theolds number is not only important in engineering design,
power of multigrid methods is in their ability to quicklybut also in providing an insight into the fundamental mech-
eliminate the low-wave number component of the erroranisms at play in these complex flows. However, the com-
through a succession of mesh coarsenings. In most in-putation of unsteady flows at high Reynolds number re-
stances, multigrid methods employ relaxation schemesquires a large number of grid points and sufficiently small
which act upon the local data and are thus well-suited fortime steps to resolve all the important spatial and temporal
parallel implementation. But as the multigrid algorithmscales, thus demanding imposing computational power and
descends to coarser levels, the parallel efficiency is ex-memory requirements. In the recent past, a consensus
pected to degrade because the ratio of the time of commu-seems to have emerged that large-grain distributed-mem-
nication to the time of computation increases; however,ory machines are most suitable for the execution of such
since the computational effort at the coarser levels is lesslarge problems. Many of the solution methodologies that
than at the finer levels, the overall degradation in efficiencyare of interest in CFD may be classified as ‘‘loosely syn-
is expected to be minimal for large N/p. In order to estab-chronous’’ [1] and are thus well-suited for implementation
lish this assertion, consider first the calculation on the fineston these machines. If N denotes the problem size and p
grid. A two-dimensional computational domain is assumedthe number of processors, good speedups and efficiencies
here for simplicity although similar results may be obtainedare possible for large N/p.
for higher dimensions. In a sequential computation, theAlthough it is an important requirement that the parallel
overall execution time is given byimplementation scale with p, it is perhaps more important

to develop numerical solution schemes that also scale with
tseq 5 N ftcomp ,N. A simple illustrative example, where the first require-

223
0021-9991/96 $18.00

Copyright  1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.

224 DEGANI AND FOX

where tseq , N, f, and tcomp are the sequential execution time, The application of multigrids to the calculation of steady
incompressible flow has been successfully demonstrated inthe total number of points, the floating point operations per

point, and the time to execute one floating point operation, a number of studies. Ghia et al. [4] employed the strongly
implicit relaxation scheme to solve the vorticity and associ-respectively. On a distributed-memory machine with p

processors and a block-data distribution, the overall execu- ated Poisson equations in a coupled manner and reported
a reduction in the execution time by a factor of 4 by usingtion time tpar is given by
multigrids. Vanka [5] developed the so-called symmetrical
coupled Gauss–Seidel (SCGS) relaxation scheme appro-tpar 5 n ftcomp 1 cÏntcomm ,
priate for a staggered mesh [6]. A primitive variable formu-
lation is adopted and the equations are solved in a fullywhere n 5 N/p, c is a constant of O(1), and tcomm is the
coupled mode without forming the intermediate Poissontime to communicate one byte of data. The processors
equation for the pressure. It is reported that this schemecommunicate along the boundary, and, for a block-data
has better stability and smoothing properties than the dis-distribution, the number of data to be communicated scales
tributed Gauss–Seidel (DGS) method originally proposedwith Ïn. The parallel efficiency for the calculations on the
by Brandt [7]. Variants of the SCGS method were alsosingle grid hsingle is then given by
used in later studies [8, 9]. Multigrid calculations based on
a staggered curvilinear mesh and employing a decoupled

h21
single 5

ptpar

tseq
5 1 1

ca
f

1

Ïn
, (1) pressure-correction based relaxation scheme have also

been carried out [10]. Recently, results on three-dimen-
sional flow calculations in generalized curvilinear coordi-

where a 5 tcomm/tcomp . Next consider the multigrid calcula-
nates were reported [11].

tion. In the sequential implementation, this involves ob-
Here, the parallel implementation of the multigrid

taining the solution on successively coarser grids of size
method is applied to the time-accurate calculation of the

N/4, N/16 Assuming N large, the sum of the computa-
unsteady, incompressible Navier–Stokes equations. As a

tional effort may be approximated by an infinite series, in
first step, a regular structured two-dimensional cartesian

which case the overall execution time of the sequential
coordinate system is considered; however, since a primitive

multigrid scheme is given by
variable formulation is adopted, an extension to three-
dimensional flow is possible. The multigrid algorithm was
first implemented on a sequential machine in Fortran 77tseq 5

4
3

N ftcomp .
but designed in a fashion to allow the subsequent develop-
ment of a parallel version using message passing with a

In the parallel implementation, the computational effort minimum number of modifications. This process consider-
and data to be communicated decrease by a factor of Af ably simplifies the overall development and debugging of
and As , respectively, with each grid coarsening. Once again, the code.
assuming an infinite series, the overall parallel execution
time is 2. NUMERICAL SCHEME

Discretizationtpar 5
4
3

n ftcomp 1 2cÏntcomm ,
Consider the nondimensionalized unsteady incompress-

ible Navier–Stokes equations given byand consequently the parallel multigrid efficiency hmulti is
given by

­u
­t

1 u ? =u 5 g 2 =p 1
1

Re
=2u, (3)

h21
multi 5 1 1

3ca
2f

1

Ïn
. (2)

= ? u 5 0. (4)

A spatial and temporal second-order accurate upwind–Thus, although the multigrid efficiency is lower, the degra-
dation occurs in the higher-order term and only by a factor downwind discretization scheme, originally developed for

the calculation of boundary-layer equations [12], is ex-of 3/2. In three dimensions, it may be easily shown that
the degradation factor is 7/6 with Ïn replaced by Ï3 n. tended here for the computation of the unsteady incom-

pressible Navier–Stokes equations on a staggered gridAlthough the above development is an over-simplification,
it serves to illustrate that the parallel implementation of shown in Fig. 1. A temporal discretization of the momen-

tum equations (3) at the mid-time plane, i.e., at t 1multigrid schemes on large-grain distributed-memory ma-
chines is scalable. Dt/2, yields

PARALLEL MULTIGRID COMPUTATION 225

Qx
­u
­xU

i11/2 , j

5 hQxji11/2, j F1
2 Sun11

i13/2, j 2 un11
i11/2, j

Dx
1

un
i11/2, j 2 un

i21/2, j

Dx DG ,

hQxji11/2, j . 0,

Qx
­u
­xU

i11/2 , j

5 hQxji11/2, j F1
2 Sun11

i11/2, j 2 un11
i21/2, j

Dx
1

un
i13/2, j 2 un

i11/2, j

Dx DG ,

hQxji11/2, j , 0,

provides a spatial and temporal second-order accurate up-
wind–downwind discretization. The quantity Qx 5 2u
evaluated at the mid-time plane and at location (x 1 Dx/
2, y) is given by

Qx 5 2etu,
FIG. 1. The staggered mesh showing location of the velocity and

pressure: h, u-velocity; L, v-velocity; s, pressure. where e denotes the averaging operator. A similar scheme
is also used for Qy­v/­x; however, the quantity Qy 5 2u
is not defined at the location where the y-momentum equa-
tion is discretized, i.e., at (x, y 1 Dy/2). In this instance,un11 2 un

Dt
5 gn11/2

x 1 Qx
­u
­x

1 Px
­u
­y

(5) the required value is obtained from

Qy 5 2etexeyu.2
­pn11/2

­x
1

1
Re F­2u

­x2 1
­2u
­y2G ,

The other two convection terms are treated in a similar
and manner and appropriate second-order central differences

are employed for the diffusion and pressure-gradient
terms. The resulting momentum difference equations arevn11 2 vn

Dt
5 gn11/2

y 1 Qy
­v
­x

1 Py
­v
­y

(6)
given by

Mx
11un11

i13/2, j 1 Mx
21un11

i11/2, j11 1 Mx
31un11

i11/2, j2
­pn11/2

­y
1

1
Re F­2v

­x2 1
­2v
­y2G ,

1 Mx
41un11

i11/2, j21 1 Mx
51un11

i21/2, j

where the overbar denotes the evaluation of the quantities 1 Dx
1pn11/2

i, j 1 Dx
2pn11/2

i11, j (7)
at the mid-time plane, and the superscripts n, n 1 1, and

5 Mx
12un

i13/2, j 1 Mx
22un

i11/2, j11 1 Mx
32un

i11/2, jn 1 As indicate the values of the associated variables at
times t, t 1 Dt, and t 1 Dt/2, respectively. The quantities

1 Mx
42un

i11/2, j21 1 Mx
52un

i21/2, j 1 Gu ,
Qx 5 2u, Qy 5 2u, Px 5 2v, and Py 5 2v are introduced
here to facilitate the subsequent description of the discreti-

andzation scheme. Note that the pressure is defined only at
the mid-time plane.

My
11vn11

i11, j11/2 1 My
21vn11

i, j13/2 1 My
31vn11

i, j11/2A uniform computational mesh is assumed and the x-
and y-momentum equations are discretized at (x 1 Dx/2, y) 1 My

41vn11
i, j21/2 1 My

51vn11
i21, j11/2

and (x, y 1 Dy/2), respectively; these locations are denoted
1 Dy

1pn11/2
i, j 1 Dy

2pn11/2
i, j11 (8)by the subscripts (i 1 As , j) and (i, j 1 As) in Fig. 1. To

illustrate the upwind–downwind scheme for the convection 5 My
12vn

i11, j11/2 1 My
22vn

i, j13/2 1 My
32vn

i, j11/2
terms, consider for example, the discretization of Qx­u/­x

1 My
42vn

i, j21/2 1 My
52vn

i21, j11/2 1 Gv .on a staggered mesh. It may be confirmed that

226 DEGANI AND FOX

The coefficients in (7) and (8) are evaluated at (i 1 As , j) where the bottom horizontal wall is considered for illustra-
tion and ug is the specified wall speed. Thus, upon applyingand (i, j 1 As), respectively, and are given in the Appendix.

Note that for boundary cells, the above difference equa- the no-slip condition in a similar manner all along the
boundary, as many equations are generated as the numbertions involve quantities that lie outside the computational

domain; this issue is taken up later in the discussion of the of fictitious points required in the discretized momentum
equations (10). A general form of the specified boundaryimplementation of the boundary conditions. The discret-

ized momentum equations may be compactly written as conditions may be represented by

Mx
1u 1 Dxp 5 Mx

2u* 1 Gu 5 Fu , Lq 5 F, (12)

My
1v 1 Dyp 5 My

2v* 1 Gv 5 Fv .
where L is an operator and F is specified. In a typical
solution procedure, (10) and (12) are relaxed alternately

Note that (u, v) and p are evaluated at t 1 Dt and t 1 until convergence.
Dt/2, respectively, and the superscript ‘‘*’’ denotes the
evaluation at the previous time t. The continuity equations

FAS Multigrid Algorithm(4) is left in its original form, and a second-order discretiza-
tion at the cell center at time t 1 Dt yields The discretized difference equations and boundary con-

ditions are given by
hDx

1un11
i21/2, j 1 Dx

2un11
i11/2, j 1 Dy

1vn11
i, j21/2 1 Dy

2vn11
i, j11/2j 5 0, (9)

Mk
1qk 5 Fk, Lkqk 5 Fk, (13)

which may be compactly expressed as

where the superscript k denotes discretization on a grid
Dxu 1 Dyv 5 Gp 5 0. level k. The quantity Fk on the finest grid k 5 M is obtained

from (10) and is given by
Upon defining

Fk 5 Mk
2q*k 1 Gk, k 5 M. (14)

At the finest grid k 5 M, (13) are relaxed before a subse-q 53
u

v

p
4 , G 53

Gu

Gv

Gp

4 , F 53
Fu

Fv

Fp

4 ,
quent coarsening process outlined next. In the Full Ap-
proximation Storage (FAS) method, a coarse-grid approxi-
mate solution, which is the sum of the error and the base
approximation on the finer grid, is calculated. The resulting
equations have the same form as (13), but the right-handM1 53

Mx
1 0 Dx

0 My
1 Dy

Dx Dy 0
4 , M2 53

Mx
2 0 0

0 My
2 0

0 0 0
4 ,

side is now given by

the difference equations for the unsteady incompressible
Fk 5 Mk

1qk 1 Ik
k11Rk11 k , M,

Fk 5 Lkqk 1 Ik
k11P

k11, k , M,
(15)

Navier–Stokes equations may be expressed as

where R and P denote the residuals in the interior andM1q 5 F 5 M2q* 1 G. (10)
boundary equations, respectively, and Ik

k11 is the restriction
operator. The residuals are given byThe implementation of the boundary conditions is taken

up next. For simplicity, only Dirichlet boundary conditions
Rk11 5 Fk11 2 Mk11

1 qk11,
(16)

on the velocity are considered here in which case no bound-
ary conditions on the pressure are necessary. Although

Pk11 5 Fk11 2 Lk11qk11,
the normal velocity boundary condition can be satisfied
exactly, such is not the case for the no-slip condition; how-

and qk is obtained fromever, a second-order accurate discretization of the latter
yields

qk 5 Ik
k11qk11. (17)

heyujn11
i11/2,1/2 5

un11
i11/2,0 1 un11

i11/2,1

2
5 hugji11/2,1/2 , (11)

Inspection of the coefficients in (10) in the Appendix indi-

PARALLEL MULTIGRID COMPUTATION 227

cates that both (uk, vk) and (u*k, v*k) are required in order There are two commonly used formulae for restricting u
and Ru in the interior of the computational domain, viz.to evaluate the nonlinear operator Mk

1 ; the former is ob-
tained from (17) and the latter is obtained by storing the
velocities at the previous time step at all levels. The re- hIujk

k11 5 ek11
y , (20)

sulting equations, with an initial estimate of qk given by
hIujk

k11 5 ek11
x ek11

x ek11
y . (21)(17), are relaxed once again and the coarsening process

continues until the grid k 5 1 is reached. In the backward
Equations (20) and (21) result in 2-point and 6-point for-sweep, it is the error in the solution, not the solution itself,
mulae, respectively; the former has been used in [5] and thethat is projected from the coarser grid to the finer grid;
latter in [9, 10]. The relative merit of the two alternatives isthus, the corrected finer grid k solution is calculated by
discussed further in Section 3. The velocity u also needs
to be restricted along the boundary G and a 2-point formula

qk r qk 1 Ik
k21hqk21 2 Ik21

k qkj, k ? 1, (18) is appropriate for sections of G where u is the normal
velocity. From the second of (15), it follows that for the
implementation of the no-slip condition considered here,where Ik

k21 denotes the projection operator. The equations
both the boundary residual and fictitious velocity need toin (13) are relaxed before the next correction step and this
be restricted. Thus, along the sections of G where u is theprocess continues until the finest grid k 5 M is reached,
tangential velocity, the standard 3-point average is usedthus completing one ‘‘V’’ cycle iteration of the FAS
to restrict the appropriate values. The restriction formulaemultigrid algorithm. A V(2, 1) cycling scheme is adopted
for the velocity v and y-momentum residual Rv is obtainedhere, i.e., the equations (13) are relaxed twice and once
by a simple 908 rotation of the formulae for u and Ru .in the forward and backward sweeps, respectively.

Bilinear interpolation is commonly used to obtain theOn the staggered mesh considered here, the Dirichlet
correction to q [5, 7, 10]. Although the projected correc-conditions on the normal velocity can be satisfied exactly
tions are easily obtained for all the interior cells, someand thus the boundary residual at any level is identically
modification to the formulae is necessary in the boundaryzero. For this subset of the boundary conditions, an explicit
cells due to the nature of the staggered grid. To addressuse of the second of (15) is not necessary since the normal
this, a number of options were tried: (i) using the bilinearvelocity at the coarser grid is obtained from (17). In effect,
interpolation stencil to extrapolate the appropriate valuesthe Dirichlet conditions on a grid k , M are obtained by
in the boundary cells, (ii) assuming a zero normal pressurerestricting the specified values of the normal velocity from
gradient at the boundary (following the procedure in [5,the finer grid. A similar approach may also be used for
10]), (iii) using the values of the fictitious velocity to extendthe implementation of the no-slip condition by replacing
the range of interpolation to include boundary cells, andthe appropriate subset of F in the second equation of (15)
(iv) 6-point interpolation formulae. However, no consis-by the restricted values of the wall speed, i.e.,
tent and significant differences were observed in the con-
vergence rate of the multigrid algorithm and eventually

Fk
t 5 Ik

k11F
k11
t ,

the simplest option (i) was adopted.

Smootherwhere Ft is the subset of F that specifies the wall speed.
However, this simpler approach is inferior since it does The symmetrical-coupled Gauss–Seidel (SCGS) solver
not account for a non-zero boundary residual in the no-slip [5] is employed here to smooth the system of difference
condition on the finer grid. Indeed, numerical experiments equations (10) in a fully coupled mode. In this scheme,
indicate a marked increase in the number of iterations the four velocities at the faces of each cell and the pressure,
required for convergence when this simpler approach is defined at the cell center, are updated simultaneously in
adopted. an iterative process that traverses all the cells in the compu-

In general, the restriction operators for the residuals and tational domain usually in a lexicographic order. This is
the dependent variables q may be different; however, in accomplished by inverting a 5 3 5 (for two-dimensional
this study, they are assumed to be identical. Due to the flow) matrix. In this manner, the velocity is updated twice
nature of the staggered grid, different restriction formulae and the pressure once in each sweep. Furthermore, as in
are necessary for the individual components of the residual the simple Gauss–Seidel method for scalar equations, the
R 5 (Ru , Rv , Rp) and q. For the pressure p and continuity most recently updated values are used.
residual Rp , the restriction operator is chosen to be a simple The SCGS method is briefly summarized here, but the
average of the four adjacent values, viz. details may be found in [5]. Assume that the iterative

process is at cell (i, j) in its sweep through the computa-
hIpjk

k11 5 ek11
x ek11

y . (19) tional domain and denote du, dv, and dp as the difference

228 DEGANI AND FOX

in the updated and old values of u, v, and p, respectively. the subsequent implementation of a parallel version, the
sequential code was designed to allow a smooth transitionIf the x-momentum equation (7) at (x 1 Dx/2, y) is used

to update only ui11/2, j and pi, j , then it follows that in terms to the development of a single program multiple data
(SPMD) code in Fortran 77 with message passing. Theof du and dp,
SPMD code, which uses synchronous collective communi-
cation, was developed by interspersing calls to routines inhMx

31ji11/2, jdun11
i11/2, j 1 hDx

1ji11/2, jdpn11/2
i, j 5 hRuji11/2, j ,

an interface layer at appropriate locations in the sequential
code; the original Fortran 77 statements required very fewwhere hRuji11/2, j is the residual calculated prior to the up-
changes. The routines in the interface layer between thedate and is the difference between the right- and left-
main code and the message-passing library, compose andhand sides of (7). Similarly, the x-momentum equation at
decompose messages that are sent and received, respec-location (x 2 Dx/2, y) is written as
tively, make calls to the appropriate routines in the mes-
sage-passing library and perform peripheral book-keepinghMx

31ji21/2, jdun11
i21/2, j 1 hDx

2ji21/2, jdpn11/2
i, j 5 hRuji21/2, j .

tasks. Thus, when porting to other systems, only the inter-
face layer, and not the main code, needs to be modifiedExpressing the y-momentum equation (8) at the top and
which considerably simplifies the transition. Portability wasbottom faces of the cell and the continuity equation (9) in
a main design consideration in constructing the parallela similar manner results in a sparse system of five equations
code.in five unknowns which is inverted analytically and the

The data are distributed in blocks on a two-dimensionalresulting formulae are used to obtain the changes in the
mesh of abstract processors and the local data in eachfour velocities and pressure.
processor are mapped onto a local 1D array. The second-In the computation of steady incompressible flow, it
order accurate discretized equations (7) and (8) and thewas found [5] that the SCGS scheme is either slowly
projection and restriction operators considered here indi-convergent or divergent when applied to calculate high
cate that each processor requires data from the boundaryReynolds number flows on fine grids. In this instance,
cells of the adjacent processors. Consequently, the two-it becomes necessary to provide damping to stabilize the
dimensional array of cells in each processor is augmentedSCGS scheme. This is accomplished by multiplying the
by a buffered boundary of one cell thickness for all thediagonal terms of the 5 3 5 system of equations by
multigrid levels. Appropriate flags are set in each processorconstants which are greater than unity. In this study,
to indicate whether it lies adjacent to the boundary or inwhich considers unsteady flow, it was not found necessary
the interior of the computational domain. By choosing theto include damping factors in the calculation of the
number of cells in the finest grid such that each processorresults presented here. This may be attributed to the
has an equal number of cells, the issue of load balancingappearance of Dt21 in the terms along the diagonal of
is not considered here.the 5 3 5 system of equations which enhances the

The parallel code was developed on the 32-node CM-5diagonal dominance of the interative scheme. Although
installed at the Northeast Parallel Architectures Centerthe present methodology is not tailored toward calculating
using the Connection Machine communication librarysteady flow, it is possible to achieve this objective by
CMMD. Since the code is written in Fortran 77, the fourconsidering large time steps. In this instance, the un-
vector units (VUs) on each node may be accessed only bydamped SCGS scheme was found to become unstable
writing non-portable assembly language code [13]. Thefor high Reynolds number and fine grids.
CMMD library also provides virtual channels and an active
message interface which considerably reduce the message

3. PARALLEL IMPLEMENTATION latency. However, in keeping with the main design consid-
eration of constructing portable code, none of the above
functionalities were incorporated.Prior to discussing the specifics of a parallel implementa-

tion of the multigrid calculation of the unsteady incom- The details of the parallel implementation of the
multigrid method are now taken up. Consider first the idle-pressible Navier–Stokes equations, some general com-

ments are made first on the development and structure of processor problem which occurs at coarse multigrid levels
where the total number of cells is less than the number ofthe parallel code. The multigrid method was first developed

on a sequential machine in Fortran 77. For efficient mem- processors. To simplify the subsequent discussion, let the
finest grid contain N cells which are arranged in a two-ory utilization, the two-dimensional arrays at all levels are

mapped onto a single one-dimensional array and a table dimensional array ÏN 3 ÏN on a processor mesh of
Ïp 3 Ïp; furthermore, let ÏN 5 2h and Ïp 5 2s. It isis generated containing pointers to the first element at each

level. This is convenient in Fortran 77 since arrays are assumed that the coarest grid consists of an array of 2 3
2 cells; thus the total number of multigrid levels is h. In apassed to functions based on assumed size. Anticipating

PARALLEL MULTIGRID COMPUTATION 229

sequential multigrid, the total computational time for h for h1 # k # sj,
levels is given by tseq 5 4/3 ftcomp(N 2 1), where an infinite

stride 5 2s112k

series approximation has not been used. In a parallel imple-
mentation, each processor is assigned a grid of Ïn 3

coalesce (ip 1 i, jp 1 j) H(ip, jp) mod stride 5 0

0 # i, j # stride 2 1.Ïn cells at the finest level, where n 5 N/p. The multigrid
calculations may be continued until each processor con-
tains 2 3 2 cells, which occurs at level s 1 1. The computa- In this manner, the computational effort for each processor
tional time required for the first h 2 s finest grids is given is the same for all grid levels at and coarser than s. Thus,
by t f

par 5 4/3ftcomp (n 2 1). The simplest approach for all the overall computational time for the coarsest s levels is
levels at and coarser than s is to have each processor solve given by tc

par 5 4sftcomp . Noting that s 5 1/2 log p, the
the same problem. In this case, subsequent to an all-to- ideal parallel efficiency may be shown to be given by
all broadcast, each processor contrains Ïp 3 Ïp cells
at level s. The computational time required to solve
this problem is given by tc

par 5 4/3ftcomp(p 2 1). Thus, h21
ideal 5 1 1

p[Ds log p 2 1] 1 1
np 2 1

. (23)
for this approach, the ideal parallel efficiency (i.e., dis-
counting all communication overhead) may be shown to

Considering the two limiting cases once again, we getbe given by

(a) n @ p h21
ideal p 1 1 O S1

nD,
h21

ideal 5 1 1
(p 2 1)2

np 2 1
. (22)

(b) n,p @ 1 h21
ideal p 1 1 O Slog p

n D .
The two limiting cases of interest here are:

Thus, the degradation in the ideal parallel efficiency is re-
ducedtoanacceptable level incomparisonwiththeprevious(a) n @ p h21

ideal p 1 1 O S1
nD,

method for the case where both n and p are large. Although
the order of degradation in the ideal efficiency is the same

(b) n,p @ 1 h21
ideal p 1 1 O Sp

nD . for both approaches considered here for the case where
n @ p, the former is preferable especially in a high-latency
environment such as a network of workstations.

The parallel implementation of the smoother is discussedThus this approach is appropriate for the solution of large
problems on a modest number of processors such as a next. The overriding theme here is to parallelize the sym-

metrical coupled Gauss–Seidel scheme [5] with minimalnetwork of workstations. An added advantage of this ap-
proach is that besides the all-to-all broadcast, no communi- modifications to the original algorithm. With this objective

in mind, a parallel version, PAR-SCGS, is developed whichcation is required for the coarse-grid levels which is an
important consideration in this situation where typically is appropriate for distributed-memory machines using mes-

sage passing. The red–black ordering scheme, commonlythe communication latencies are high. On the other hand,
the degradation in efficiency is unacceptable when p p employed to solve the discretized second-order Laplace

equation with a Gauss–Seidel smoother, is also the basisO(n) and thus this approach is not scalable.
An alternative approach is adopted here for multigrid for PAR-SCGS; however, a two-color scheme is adopted

here for a different reason and this is elaborated uponlevels at and coarser than s which is appropriate for
cases in which both n and p are large. Let the coordinates subsequently. Consider Fig. 2a which shows a two-dimen-

sional mesh of cells in a processor along with the aug-of an abstract processor in the two-dimensional mesh
be denoted by (ip, jp) where 0 # ip, jp # Ïp 2 1. At mented buffer boundary of one cell thickness. The proces-

sor boundary is indicated by a thick line and we assumelevel s, the four processors identified by the coordinates
(ip, jp), (ip 1 1, jp), (ip, jp 1 1), (ip 1 1, jp 1 1), that, through prior communication, all data values in the

buffered boundary have been obtained from the adjacentwhere ip, jp mod 2 5 0, coalesce their data onto a
2 3 2 cell grid and each of these processors solves the processors. The red and black cells may be identified by

(i 1 j) mod 2 5 0 and (i 1 j) mod 2 5 1, respectively,same problem; in effect, only one-fourth of the processors
are active. The ‘‘adjacent’’ neighbors are now a stride where (i, j) denotes the location of a cell in the global

mesh; furthermore, assume that the bottom left cell withinof 2 away in each of the coordinate directions. Similarly,
at the next coarser level, a group of 16 processors solve the processor is red. In step 1, all the red cells are relaxed.

Note that for the cells along the interior boundary of thethe same problem and so on. This may be summarized:

230 DEGANI AND FOX

FIG. 2. Stages in the execution of Parallel SCGS. (a) Step 1: Relaxation of ‘‘red’’ cells (). Cells relaxed in the neighboring processors are
identified by a cross-hatch. (b) The values at the end of Step 1 are shown in red (). In Step 2(a), the red hatched values are obtained from the
left and right neighboring processors. (c) The values at the end of Step 2(a) are shown in red. In Step 2(b), the red hatched values are obtained
from the bottom and top neighboring processors. (d) At the end of Step 2(b), all red values are known. In step 3, ‘‘black’’ cells (j) are relaxed
and the cells in the neighboring processors are identified by cross-hatching. (e) The values at the end of Step 3 are shown in black. In Step 4(a),
the black hatched values are obtained from the left and right neighboring processors. (f) The values at the end of Step 4(a) are shown in black. In
step 4(b), the black hatched values are obtained from the bottom and top neighboring processors.

processor, (7) and (8) indicate that data in the buffered are shaded red to indicate that the velocity has been up-
dated once by the relaxation of the red cells. Simultane-boundary are required. Within the processor, the updated

values are shown in ‘‘red’’ (shaded). In one sweep of ously, the red cells are also relaxed in the neighboring
processors, but the updated values are not yet availablethe SCGS scheme, the pressure is updated once and the

velocity twice. Thus only one-half of the velocity symbols and are distinguished by a cross-hatch. The relaxation of

PARALLEL MULTIGRID COMPUTATION 231

FIG. 2—Continued

the red cells is followed by Step 2 which involves two stages chronous send-and-receive. In a similar manner, the cross-
hatched data on the left boundary is received from the leftof communication with neighboring processors. In the first

stage, Step 2(a), shown in Fig. 2b, each processor sends processor. Thus after two send-and-receives, each proces-
sor has the updated data shown in Fig. 2c. The secondthe updated data on the left interior boundary to the left

processor and receives the cross-hatched data in the buf- stage in the communication is similar to the first, but now
each processor communicates with its top and bottomfered right boundary from the right processor using a syn-

FIG. 3. Steady state solution in a square cavity with the top wall moving at unit speed from right to left, Re 5 100, 1000: (a) the horizontal
velocity along the vertical centerline, (b) the vertical velocity along the horizontal centerline.

FIG. 4. Normalized velocity vector plots in a cavity of aspect ratio 2 with the top wall moving at unit speed from right to left, Re 5 400: (a)
t 5 6, (b) t 5 8, (c) t 5 10, (d) t 5 12.

232

PARALLEL MULTIGRID COMPUTATION 233

neighbor. Note, however, that some data obtained from introduces no communication, whereas (21) does. For the
test problems considered here, it was empirically deter-both the left and right processors in Step 2(a) are also

communicated. In this manner, as indicated in Fig. 2d, data mined that the convergence rate of the multigrid method
is insensitive to the choice of restriction operators. There-may be obtained from the diagonal neighbors without any

explicit communication with them. Step 3 involves the re- fore, it would appear that (20) is clearly preferable in the
parallel multigrid method. However, (21), which describeslaxation of the black cells, and once again, the cells relaxed

in the neighboring processors but whose updated values a ‘‘full-weighting’’ restriction operator, is generally consid-
ered to be more robust especially for nonlinear problemsare not yet available are indicated by a cross-hatch. In Step

4, the black data values are communicated in an analogous and near boundaries [7]. Therefore, more extensive testing
is necessary to determine the relative influence of (20) andmanner to that in step 2 and at its conclusion all the data,

including those in the buffered boundary, are updated. This (21) on the convergence rate, and thus to assess whether
the increase (if any) in convergence rate by using the 6-sets the stage for the next iteration at the start of Step 1.

Consider now the differing roles of the two-color point formula justifies the added overhead in communica-
tion. In the meantime, the present implementation usesschemes in the solution of the second-order accurate La-

place equation and the PAR-SCGS algorithm. If a one- the 6-point formula and all results have been obtained with
this restriction operator; note that by using the alternativecolor scheme is adopted for the Laplace equation, a Jacobi-

type iteration will result at the processor boundary, a limi- 2-point formula, a reduction in communication time by
approximately a factor of 30% may be achieved. In thetation that is easily overcome by a two-color scheme. With

a red–black point ordering scheme, the update of the po- backward sweep, communication is required in order to
obtain the value of the error in the buffered boundary attential at a point depends only on the values of the potential

at adjacent points of the other color, and the smoothing the coarser level prior to prolongation to the finer level.
In all cases where data from the diagonally located proces-rate remains independent of the number of processors. If

a one-color scheme is used for the SCGS smoother, it sors are required, no explicit message passing with these
processors is necessary since the data may be obtainedmay be confirmed that the values of the velocity on the

processor boundary will be different in the neighboring indirectly as demonstrated by the implementation of com-
munication in PAR-SCGS. In implementing the approachprocessors at the end of the iteration. Thus, in the PAR-

SCGS method described here, a two-color scheme is used defined by (23) at the coarser levels, a group of four proces-
sors coalesce their data by two successive pairs of databecause the velocity is updated twice in each sweep. How-

ever, this does not prevent a Jacobi-type iteration at the swaps. The only global communication that is required is
in testing convergence at the end of each V-cycle.processor boundary since red (black) values also depend

on the red (black) values, and consequently, a degradation
in the smoothing rate of PAR-SCGS may be expected as 4. RESULTS AND DISCUSSION
the number of processors p increases for fixed N. However,
as is demonstrated later, this degradation in the smoothing In order to test the parallel multigrid scheme developed

here, the classic problem of steady flow in a square cavityrate for the multigrid computation of the Navier–Stokes
equations is very small. is considered first. Although a time-accurate computation

is not an efficient way to obtain steady-state solutions,It may be noted that an alternative strategy that over-
comes the potential difficulty with a Jacobi-type iteration these calculations have been performed here to enable a

quantitative comparison with well-established data in theat the processor boundary is to increase the number of
colors. Although the total number of data to be communi- literature. The sides of the cavity are normalized to unity

and the top wall is assumed to move from right to left atcated in one iteration will remain approximately the same
as that in the two-color scheme, smaller messages will be unit speed. Two Reynolds numbers are considered, viz.

Re 5 100, 1000, and the time step is chosen to be uniformsent more frequently. This will result in an increase in
message latency, rendering this alternative inappropriate and equal to Dt 5 0.1. Fig. 3a shows the horizontal

velocity along the vertical centerline of the cavity, andin light of the fact that the degradation in smoothing rates
for PAR-SCGS described above is minimal. A similar argu- Fig. 3b shows the vertical velocity along the horizontal

centerline. The computed data by Ghia et al. [4] werement may also be made against the distributed Gauss–
Seidel (DGS) [7] method in which each equation is obtained on a grid of 128 3 128 using the vorticity-stream-

function formulation.smoothed individually, thus increasing message latency.
Communication is also required in the intergrid transfer The next test case considers the unsteady flow in a rect-

angular cavity where the ratio of the vertical to horizontalof data. Consider first the restriction of q and the residual
R in the forward sweep of the V-cycle. As indicated earlier, sides is 2. The top wall is set into impulsive motion at time

t 5 0 and moves from right to left at unit speed. Thethere are two options commonly used to restrict u and the
x-momentum residual Ru . It may be deduced that (20) Reynolds number is Re 5 400 and the time step is Dt 5

234 DEGANI AND FOX

TABLE I TABLE II

Number of Work Units WUk on a Sequential MachineResidual Tolerance Error for Various Grid Sizes
(Re 5 1000, Dt 5 0.01)

Global grid
Global grid

32 3 32 64 3 64 128 3 128 256 3 256
Levels 32 3 32 64 3 64 128 3 128 256 3 256

Tol 1.0 3 1023 2.5 3 1024 6.0 3 1025 1.5 3 1025

1 60 — — —
2 24 350 — —
3 10 99 825 —
4 8 27 220 —
5 8 13 58 3150.02. The grid size is 64 3 128, but for clarity only every
6 — 13 17 82other point is shown. The instantaneous flow patterns at
7 — — 17 22four selected times are shown in Fig. 4 in the same format
8 — — — 21

as that used by Gustafson and Halasi [14] and show good
agreement with their computed results. A quantitative
comparison is not possible since the appropriate data were
not tabulated in the work cited above. order during the smoothing operation of SCGS. Table II

Next the effectiveness of applying multigrid methods to shows the variation of WUk per time step with resolution of
the solution of the unsteady incompressible Navier–Stokes the finest grid and number of multigrid levels; the results in
equations is considered. Table I shows the residual toler- Table II are obtained by averaging WUk over the first 10
ance error that is specified for various fine grids. It is time steps. The flow configuration is a square cavity in which
appropriate to choose the tolerance error to be of the same the top wall is set into impulsive motion with unit speed at
order of magnitude as the discretization error which for a t 5 0 and the Reynolds number and time step are Re 5 1000
second-order accurate scheme is of the form Kh2 where h and Dt 5 0.01. There is a substantial reduction in computa-
denotes the mesh spacing and K p O(1). Choosing K 5 tional effort as the number of multigrid levels is increased
1, the residual tolerance error is then approximately set and this is more pronounced as the number of mesh points
to h22. Convergence is deemed to have occurred at each in the finest grid is increased. With the same flow conditions
time step when the residuals of the continuity and momen- and parameters, the computational effort for the parallel
tum equations are all less than the residual tolerance. In multigrid calculation is also obtained. In this case, PAR-
the context of multigrid methods, it is convenient to quan- SCGS is used as the smoother over a processor mesh of 8 3
tify the computational effort in terms of work units (WU) 4 and the implementation defined by (23) is used for the
[2]. Let the effort in performing one iteration on the finest coarser levels. Table III shows WUk (summed over all the
grid be 1 WU. In a V-cycle, denoted by V(n1 , n2), the processors) and the resuults indicate trends similar to those
number of iterations in the forward and backward sweeps observed for the sequential implementation. It may be
at each level besides the coarest are given by n1 and n2 . noted by comparing the results in Tables II and III that for
At the coarsest level, only the forward sweep is performed a grid size and multigrid levels, the number of work units
and thus the number of iterations at this level is n1 . For a required by the parallel implementation is generally higher.
two-dimensional domain, the computational effort reduces
by a factor of 4 for each coarsening of the mesh. Therefore,
the number of WU’s required for one V-cycle with M

TABLE IIIlevels of multigrids is given by
Number of Work Units WUk on a Processor Mesh of 8 3 4

(Re 5 1000, Dt 5 0.01)
WU1 5

4
3

(n1 1 n2)h1 2 222(M21)j 1 n1222(M21), (24)
Global grid

Levels 32 3 32 64 3 64 128 3 128 256 3 256where the subscript on WU denotes the number of itera-
tions of the V-cycle. If the number of iterations of the V- 1 86 — — —
cycle to obtain a converged solution at a time step is de- 2 30 452 — —

3 10 119 966 —noted by k, then the computational effort in terms of work
4 6 29 243 —units is given by WUk 5 kWU1 . Note that in this study it
5 — 15 59 347is assumed that n1 5 2 and n2 5 1.
6 — — 23 82

Consider the sequential implementation on a single 7 — — — 25
processor where the cells are traversed in a lexicographic

PARALLEL MULTIGRID COMPUTATION 235

APPENDIX

The coefficients in the momentum equations (7) and (8)
and the continuity equation (9) are given by

Mz
11 5 2

a1

Re
1 Qza4 ,

Mz
21 5 2

a3

Re
1 Pza7 ,

Mz
31 5 2

1
Dt

1
(a1 1 a3)

Re
1 Qza5 1 Pza8 ,

Mz
41 5 2

a3

Re
1 Pza9 ,

Mz
51 5 2

a1

Re
1 Qza6 ,

FIG. 5. Variation of speed up with number of processors for single- Mz
12 5 a1

Re
1 Qza6 ,

grid and multigrid calculations.

Mz
22 5 a3

Re
1 Pza9 ,

This is a direct result of the fact that the smoothing rate of
Mz

32 5 1
Dt

2
(a1 1 a3)

Re
1 Qza5 1 Pza8 ,PAR-SCGS is inferior to SCGS since the former utilizes a

Jacobi-type iteration at the processor boundary; however,
Mz

42 5 a3

Re
1 Pza7 ,this degradation is minimal when the full complement of

multigrid levels is utilized.
Mz

52 5Finally, the speed up for both single-grid and multigrid
a1

Re
1 Qza4 ,

calculations is shown in Fig. 5 where the number of proces-
sors is varied from 1 to 32 in steps of 2. The speedup is Dz

1 5 2Dz21,
obtained from t1/tp where tp and t1 denote the measured

Dz
2 5 Dz21,execution times for calculations with p processors and a

single processor, respectively. For the multigrid calcula-
Gu 5 gn11/2

x ,tions, the maximum number of levels possible is used for
a given fine grid and the approach defined by (23) is imple- Gv 5 gn11/2

y ,
mented at the coarser levels. Three expected trends may
be observed: (i) the degradation in speedup for both single- where z 5 x,y for the x- and y-momentum equations,
grid and multigrid calculations with increasing number of respectively. The coefficients ai are given by
processors is more pronounced for smaller-sized problems,
(ii) the speedup of multigrid is always less than single-grid

a1 5 1
2Dx2 ,calculations, and, most importantly, (iii) the difference in

speedup between single-grid and multigrid calculations di-
a3 5 1

2Dy2 ,minishes with increasing problem size.

a4 55. CONCLUSIONS 2
Az

2Dx
,

A parallel multigrid scheme for the time-accurate calcu- a5 5 (Az 2 1/2)
Dx

,
lation of the unsteady incompressible Navier–Stokes equa-
tions in primitive variables has been investigated. The con- a6 5 1 2 Az

2Dx
,vergence rate of the multigrid method using the parallel

smoother, PAR-SCGS, developed here is comparable to a7 5 2
Bz

2Dy
,that of a sequential algorithm. It is shown that good speed-

ups are attainable for multigrid calculations as the problem
a8 5 (Bz 2 1/2)

Dy
,size increases. The reduction in the computational effort

by incorporating multigrids dominates the degradation in
a9 5 1 2 Bz

2Dy
,speedup when compared with single-grid calculations.

236 DEGANI AND FOX

and REFERENCES

1. G. C. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon and
D. Walker, Solving Problems on Concurrent Processors (PrenticeAz 5 1 1 sgn(Qz)

2
,

Hall, Englewoods Cliffs, NJ, 1988), Vols. I and II.
2. A. Brandt, Math. Comput. 31, 333 (1977).Bz 5 1 1 sgn(Pz)

2
. 3. W. L. Briggs, A Multigrid Tutorial (SIAM, Philadelphia, 1987).

4. U. Ghia, K. N. Ghia, and C. T. Shin, J. Comput. Phys. 48, 387 (1982).
5. S. P. Vanka, J. Comput. Phys. 65, 138 (1986).Finally, note that
6. R. Peyret and T. D. Taylor, Computational Methods for Fluid Flow

(Springer-Verlag, New York/Berlin, 1983).
Qx 5 2etu,

7. A. Brandt, GMD-Studien 85 (Gesellschaft fur Mathematik und
Datenverarbeitung MBH, Bonn, 1984).Qy 5 2etexeyu,

8. M. C. Thompson and J. H. Ferziger, J. Comput. Phys. 82, 94 (1989).
9. C-H. Bruneau and C. Jouron, J. Comput. Phys. 89, 389 (1990).Px 5 2etexeyv,

10. W. Shyy and C-S. Sun, Comput. and Fluids 22, 51 (1993).
Py 5 2etv. 11. C. Sheng, L. Taylor, and D. Whitfield, AIAA Paper 94-2335, in Proc.,

AIAA 25th Fluid Dynamics Conference, Colorado Springs, CO, 1994.
12. T. L. Doligalski and J. D. A. Walker, J. Fluid Mech. 139, 1 (1984).ACKNOWLEDGMENT
13. Thinking Machines Corporation, CMMD Reference Manual (Think-

ing Machines Corporation, Cambridge, MA, 1993).The authors gratefully acknowledge the support of this work under a
research grant from the Alex G. Nason Foundation. 14. K. Gustafson and K. Halasi, J. Comput. Phys. 64, 279 (1986).

